
Rotating  frame  analysis  of  rigid  body  dynamics   

  in  space  phasor  variables 

 

 

Shayak Bhattacharjee 

Department of Physics, 

Indian Institute of Technology Kanpur, 

NH-91, Kalyanpur, 

Kanpur – 208016, 

Uttar Pradesh, India. 

 

*     *     *     *     * 

 

 

 

Classification 

PACS : 45.20.dc    45.40.Bb   45.40.Cc 

Keywords : Euler equations   free symmetric top   heavy symmetric top   damped compensated top 

 

 

 

 

 

 

Abstract 

In this work we propose a new method of attacking problems in rigid body rotation. Traditionally, the free 

symmetric top is solved by applying Euler’s equations but that approach is rejected for the heavy top. We here 

extend the Eulerian analysis to the heavy top, facilitating our calculations using complex (space phasor) variables. 

Axis transformations are employed to switch between the observable and the body frame components of angular 

velocity. We cover the cases of free symmetric top, heavy symmetric top, the same with damping in the pivot 

(damped compensated top), and the aforementioned with the pivot subject to an acceleration in the horizontal 

plane. In the first two cases, our method provides a simple, direct connection between the initial state and the 

final behaviour; in the last two cases, it is the asymptotic particular solutions which are of interest. We also 

include a few suggestions regarding the experimental apparatus for validating our predictions.   

 

*     *     *     *     * 



Introduction 

A rather demanding part of any classical mechanics course is the section on rigid body rotation. The counter-

intuitive behaviour of tops and gyroscopes, together with the technical difficulties inherent in their analysis, has 

drawn the attention of teachers and researchers alike. One very standard treatment of this problem is in Goldstein 

et. al. [1] where they construct the Lagrangian of the rotating top in terms of the Euler angles. Cyclic coordinates 

reveal first integrals of the motion and these can be used to ‘reduce the problem to quadratures’. Solution of the 

system is another matter as it involves elliptic functions and the profusion of mathematics pushes the underlying 

physics into the background. Some conclusions can be drawn by observing the signs etc. of various quantities and 

these lead to a description of the well-known precession and nutational behaviour of the top. This approach is in 

fact similar to the one followed in Landau and Lifshitz [2].  

A second approach has been outlined in the text by Morin [3], which places greater emphasis than Goldstein on 

physical concepts and intuition. Here, a frame has been considered where the coordinate axes form a principal 

basis for the top. The frame does not share the top’s entire angular velocity though but a part of it. The relation 

Γ=dL/dt is applied in this basis, and considerable algebraic manipulation is required to obtain the expressions for 

the time derivatives of the rotating axes. The result is a set of three coupled equations which describe the 

dynamics of spin, precession and nutation. As Morin has shown, the same equations can be obtained from the 

Lagrangian, with less effort. The solution of these equations, under certain simplifying assumptions, yields the 

precessional and nutational patterns. Yet another way of obtaining the same dynamical equations may be found in 

Peraire et. al. [4] where Euler’s equations have been employed in the principal basis used in Morin. Having 

derived the equations differently, they go on to analyse its consequences in much the same way as Morin.       

A novel approach bypassing these equations has been proposed by Schoenhammer [5] where geometrical 

considerations are used to obtain the precession and nutation. The formal dynamical equations have been 

bypassed and instead an ingenious geometric construction has been used where components of angular 

momentum in various bases, including a non-orthogonal system, have been considered. The work is innovative no 

doubt, but it may often prove difficult to correctly execute the derivation in practice, and apply it to new problems.  

Surprisingly all of the previous works use the same formalism for handling the free symmetric top – Euler’s 

equations. The symmetry criterion leads at once to a conserved momentum, and the two other equations possess 

a symmetry which makes them relatively easy to solve. The body frame angular velocities are obtained from this 

solution, together with an interpretation in terms of the inertia ellipsoid. The behaviour of the angular velocity as 

seen from the rotating frame is described; however the approach is not extended to obtain the lab frame angular 

velocities, which are the quantities of interest in the heavy top.    

In this work we start with the free symmetric top and extend the same approach to the heavy top. Further, we 

introduce complex variables to simplify the calculations and express the results more elegantly. For all kinds of 

tops, we perform a body frame analysis, using axis transformations as required to switch between the body frame 

components of angular velocity and their corresponding physically observable components. This general 

exposition is the focus of Sec. I. The following Sec. II deals with a few concrete applications of the proposed 

method. To simplify the mathematics, we make two assumptions here – first that the top remains close to the 

vertical and second that the spin speed about its figure axis is sufficiently high so as not to undergo appreciable 

changes in the course of precession and nutation. We first consider the free symmetric top and next, the heavy 

top. We then add on a damping term at the pivot and observe the change in the top’s ultimate behaviour. Finally 

we treat the case where the pivot is given an acceleration in the horizontal plane. We show that the answer 

obtained from our formalism agrees with physical intuition. We conclude the paper with a summary of the main 

results and some suggestions regarding experimental verification.  

 

 

 

  

 



I.  EulEr’s Equations in space phasor variables 

We are very familiar with Euler’s equations of rigid body rotation i.e. 

  1 1 3 2 3 2 1
I I I        , (1) 

 

and its cyclic permutations but to avoid mistakes we give a brief note of how this equation is derived. It is 

obtained by transformation from a body fixed frame (the principal basis) i.e. a rotating frame to the lab frame 

whereby one has to use Coriolis’ theorem, 

 d d

d d
lab body

t t

   
     

   

L L
ω L   , (2) 

 

and employ the fact that in the principal basis,  1 1 2 2 3 3
, ,I I I  L . Application of Euler’s equation in a frame 

sharing part of the angular velocity of the top has been done in [4] as the means to derive the dynamics. In this 

work, we consider Euler’s equations in a frame attached to the top i.e. possessing all of its angular velocity.  

We are going to work in three different reference frames (*) – the lab frame (x,y,z), the intermediate frame (a,b,c) 

and the body fixed frame (d,q,o). All the frames have a common origin – the top’s pivot. The x-y-z frame is fixed in 

space. The axes are orthogonal and gravity acts along the –z direction as is conventional. Making an angle θ with 

the z axis is the symmetry axis of the top which we denote by the c axis. Considering the plane orthogonal to the c 

axis, we let the a axis be the line along which this plane intersects the horizontal x-y plane. φ is the angle in the x-y 

plane between the x and a axes. Orthogonal to a and c is b axis. Finally, the d and q axes are body fixed axes 

obtained from the a and b axes by a rotation in the a-b plane through an angle ψ.  This rotation takes place about 

the c axis which thus remains invariant but for notational consistency we shall now refer to the same axis as the o 

axis. Thus, θ becomes the angle of nutation, φ that of precession and ψ that of the top’s spin. Descriptions of the 

axes are meaningless without a diagram and we show several views of the transformations in Figs. 1 and 2. 

We write Euler’s equations in the d-q-o reference frame, getting 

  d d o q o q dI I I        , (3a) 

  q q d o d o qI I I         , (3b) 

  o o q d q d oI I I         . (3c) 

  

If the top is symmetric Id will equal Iq and if there be no torque about the o axis, (3c) will at once lead to the 

conservation of ωo. We now see that under these conditions there is a symmetry of the remaining two equations 

which permits the use of the space phasor method.  

The space phasor method is used to reduce the order of systems of real differential equations by introducing 

complex variables, called phasors. For instance, if there be two equations for two real variables, we will form a 

single phasor variable by adding j (imaginary unit) times the second variable to the first. If the original system can 

be simplified using this ansatz, then the analysis is worthwhile. The technique finds application in physics in 

analysis of the Foucault pendulum [6] and in electrical engineering in the study of electrical machinery [7],[8].  

Letting Id=Iq=I and using the conservation of ωo , we multiply (3b) by j and add it to (3a) getting 

 
     1d

d
o

d q o d q d q

I I

t I I
    


      j j j j    . (4) 

 

Quite clearly, a space phasor formulation is possible in terms of the phasor ωd+jωq which we denote by ω.  

 
(*) A note on the axis nomenclature : x-y-z is of course pretty standard and needs no comment. We have intentionally not used symbols like 

x’-y’-z’ or x1-x2-x3 for the other axes to highlight the fact that they belong to very different reference frames. The notation a-b-c is clear; d-q-o 

is taken from engineering terminology where d represents “direct” and q “quadrature” meaning “at right angles”. o is for “zero-sequence”; a 

technicality perhaps confusing to the reader who can very reasonably imagine the letter to stand for “orthogonal”. 



 

 

Figure 1 : Orthographic views of orthogonal transformations. In each view the axis of rotation comes out of the plane of the paper and is shown 

as a circle in the relevant colour. The x-y-z system is fixed in the lab frame with gravity along the –z direction. The origin is at the top’s pivot. The 

first rotation (left panel) is through angle φ about the z axis to form the x’-y’-z’ axes (these axes are useless in the analysis that follows). The next 

step (middle panel) consists of a rotation through angle θ about the x’ axis and the set of axes thus formed is denoted by a-b-c. The axis of 

symmetry of the top lies along the c axis and the top can be seen in profile view. The final step (right panel) is a rotation through angle ψ about 

the c axis to get the d-q-o axes. The coloured background highlights the fact that the rotation takes place in the plane of the top’s spin. The slate 

grey colour has been consistently used to indicate the top in this and the next figure; moreover the d q and o axes are shown in a darker shade 

of the same colour to highlight the fact that they are fixed in the top’s frame. We note that a-b-c and d-q-o are both principal axes for the top – 

however the latter frame carries the entire angular velocity of the top while the former has only a part of it. 

  

Figure 2 : Three-dimensional view of the top. The axes and angles mentioned in Fig. 1 can be seen clearly. We should remember that the 

rotations through φ and ψ are not coplanar.  

 

 



Letting o
o

I I

I
 


 and d q  Γ j  we obtain the space phasor form of (4) as  

 1d

dt I
  Γjω ω     . (5) 

 

This is the equation which must be solved for the dynamics of the body frame angular velocities.  

Our next task is to obtain the relations between the observable and body frame components of the angular 

velocity. For this we need the transformation relations between the various sets of axes. Before presenting the 

rotation matrices we mention that a formal knowledge of the theory of rotations is absolutely not required for 

understanding this paper. The transformations have been shown very clearly in Fig. 1 and it is an easy exercise in 

trigonometry to derive the matrix from the diagram. The transformation from the a-b-c to the d-q-o basis is 

simple: 

 0

0

0 0 1

 

 

    
    

     
        

ad

q b

o c

ˆ ˆcos sin
ˆˆ sin cos

ˆ ˆ

     . (6) 

    

We note that θ, φ and ψ are functions of t. The complete x-y-z to d-q-o transformation is a rotation as per the x-

convention of Goldstein and we quote the formula for it : 

            

           

    

      
     

         
         

d x

q y

o z

ˆ ˆcos cos cos sin sin sin cos cos cos sin sin sin

ˆ ˆcos sin cos sin cos sin sin cos cos cos sin cos

ˆ ˆsin sin sin cos cos

    . (7) 

 

Geometrical considerations yield the directions of the various angular velocities : is along the a axis,  along the 

z axis and   along the o axis. Now projecting these onto the d, q and o axes yields the body frame components of 

the angular velocity as follows. 

 cos sin sind           , (8a) 

 sin sin cosq           , (8b) 

 coso          . (8c) 

 

Since the main equation (5) deals with the space phasor we combine (8a)+j(8b) to get  

  sin e      1
jjω    . (9) 

 

The 1 on the right hand side (RHS) of the above refers to the unit phasor 1+j0. It is a technical construct and has 

been introduced to maintain consistency so that both sides of the equation become phasors. Otherwise the entire 

coefficient of the exponential would have to be marked as a phasor, which is cumbersome notation. In practice 

one gets by pretty well without writing the 1 (I did not while doing these calculations) and in an examination, the 

candidates should not be penalised for omitting it.  

We note that solving (5) and (9) together give us the complete behaviour of the top in terms of nutation, 

precession and spin. What we have done until this point is simply a mathematical restatement of the formulation 

of the rigid body problem – we have not obtained a solution ! Also, we have not made any assumptions, 

approximations or simplifications in this derivation which is thus fully general. The short cuts will come once we 

start using the method to solve specific problems, which is the subject of the following section. 

 



II.  Illustrative examples 

Before we begin this section we make two assumptions which make the calculations easier. First, we assume that 

the top always stays close to the vertical so that sinθ≈θ and cosθ≈1. Next, we assume that the top is fast i.e. the spin 

speed about the o axis is very high. Very high means that as the top precesses and nutates, there will be very little 

change in the spin speed because of which it can be treated as a constant which we call Ω. Hence we have the 

relation t  . We note that all the calculations of this section will use these approximations throughout so in 

future we will not bother to mention them explicitly every time we use them.  

 

1.  FREE SYMMETRIC TOP (FST) 

This is the easiest case – the torque on the top is simply zero and we have  

 d

dt
  0jω ω     . (10) 

 

Solving and using (9) together with the above mentioned approximations we readily get  

   00

( )e t   1
jj ω    , (11) 

 

where ω00 denotes ω at t=0 (the double zero is to avoid confusion with ωo). Now the real and imaginary parts of 

(11) must separately be equal, and the left hand side (LHS) is easy to split into these parts as θ and φ are both real. 

Let us examine the class of solutions featuring precession without nutation. This requires the LHS of (11) to be 

purely imaginary throughout, and at once forces the exponent on the RHS to be identically zero. If that were not 

so, the real part of the RHS would fluctuate in time, contradicting the condition of no nutation. Since /o oI I 

and o  , we have the precession frequency from 

 
0 o

o

I

I I
 


   


   . (12) 

  

This result agrees with the standard FST results found in books, which one can verify using the formula for ωo. 

This condition alone is clearly not sufficient to guarantee regular precession as we must also have ω00 purely 

imaginary. This is reasonable as it means that an initial impulse in the φ direction is necessary to initiate nutation-

free precession.  

We now analyse a more general case. Suppose the initial condition features impulses in both θ and φ directions 

such that 
00 01 0

  
j

jω . Then applying (11) and separating real and imaginary parts yields  

 
01 0

cos( ) sin( )t t       
j

   , (13a) 

 
01 0

sin( ) cos( )t t       
j

   . (13b) 

 

(13a) is integrated to yield  

 
001 sin( ) cos( )C t t


  

 
    

 

j
   . (14) 

 

Now we can see if C equals zero, then the RHS of (14) will exactly divide that of (13b) and we will be left with 

uniform precession at a frequency Ω-ν. Now C depends on the initial conditions. However we note that the choice 

of the lab frame axes in this scenario is completely arbitrary as there is no force of any kind on the top, and we can 

always choose the x-y-z system such that C evaluates to zero. In Lagrangian terms we can say that θ is a cyclic 



coordinate for the FST and can thus be chosen arbitrarily. A suitable choice of the axes thus reduces the solution 

to nutation, combined with uniform precession at frequency Ω-ν, which on substituting the value of ν evaluates to  

 

2

o

o

I

I I






   . (15) 

 

The argument going on here is rather subtle so we explain it once more. We note that in our formalism equations 

(1) to (9) are independent of the axes used since they involve vectors which are left unchanged by axes 

transformations. Their components of course change but they themselves do not. This property gives us the 

licence to choose our lab frame axes arbitrarily. The d, q and o axes are of course fixed (to within a constant ψ) but 

the x, y and z axes are not. The definitions of the Eulerian angles remain valid for any choice of the lab frame axes. 

Hence for a suitable choice of axes we can always view the top motion as a combination of steady precession and 

nutation about those axes. Let us see how to obtain the suitable lab frame axes. We fix the d-q-o axes so that ω01 

and ω0j also become fixed. Then the angle θ must be defined such that at t=0, it has the value 
0





j
. This fixes the 

lab frame axes about which the motion has a simple description. The nutation is described by  

 

01 0

2

2 2
sin coso o o

o o o

I I I t I t

I I I I I
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   
      

j
    . (16) 

 

From these we recover the known result that the nutation frequency increases and the amplitude decreases as the 

top spins faster and faster.  

We also see that the nutation frequency tends to blow up for a particular ratio between the two moments of 

inertia namely Io:I=2:1 – we note that this is the largest possible value the ratio can have. To increase the ratio, we 

must have as little mass distribution along the o axis as possible and circular symmetry forces the shape of the top 

to be a solid of revolution. The two criteria indicate that the shape of top which maximises the ratio is the plane 

disk – then too the ratio of 2 is achieved if the pivot be the same as the centre of mass – not a realistic top at all. 

Any deviation from this ideal shape only tilts the balance in favour of I (which had better be so).   

Our method has thus yielded the FST solutions and we now try other, more complicated cases. We note that the 

FST solutions are always relevant as they are in fact the homogeneous solutions of (5).  

 

2.  HEAVY SYMMETRIC TOP (HST) 

We now take on the HST using our formalism. Fig. 1 shows that the torque of gravity acts along the a axis; in fact 

along the ˆa direction as it is the cross product of the displacement ˆ( )c and the force ˆ( )b . The magnitude of the 

torque is Mghθ where h is the distance along the o axis from the pivot to the centre of mass of the top. The Γ 

phasor is obtained by applying (6) on this torque, and substituting this into (5) yields 

 d
e

d
tMgh

t I


     1

jjω ω    . (17) 

 

This equation of course has homogenous and particular solutions – the homogeneous ones are nothing but the 

FST solutions, (10)ff. and the particular solutions are the ones on which we will focus now. This solution is, using 

subscript p for particular, and assuming θp to vary slowly in comparison with Ωt : 

 
e

( )

p t
p

Mgh

I





 


1
jjω      , (18) 

 

on which (9) is applied to yield  



 

( )

p
p p p

Mgh

I


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
 


j j      . (19) 

 

The RHS of the above is purely imaginary hence we at once have 0p  whereby θp becomes a constant. Hence our 

slowly varying θ assumption leads to no error after all. Equating the imaginary parts yields the precession 

frequency; the equation is implicit however as ν depends on ωo which itself has a contribution from  . Writing 

things explicitly we recover a quadratic for  : 

   2 0o oI I I Mgh          , (20) 

 

which has the usual slow and fast precession frequency solutions.  

As in the previous case, we have again derived the HST results with considerable ease. The treatment is not yet 

over though, as our formalism provides a direct link between the release conditions and the top’s subsequent 

behaviour. This in fact is a topic which is often not discussed explicitly in books on mechanics – they give the 

dynamical equations but then do not mention what the top will actually do if say released from rest at an angle or 

released from vertical with an angular impulse. This aspect of the problem is ideally suited to our approach.  

There are only three release parameters of a HST which make physical sense. They are the launching angle θ, and 

the launch time angular velocities in the θ and φ direction. φ is a cyclic or ignorable coordinate for the HST and we 

can choose our axes such that its initial value is zero. Let us say the initial launching conditions are 
00

 , 
00

  and 

00
 . As before we have used the double nought subscript to avoid confusion with o axis components. Now 

0
0p t




  
 

and 
0

orp fast slowt
  



  
 

depending on the precession mode which the top chooses to go into. 

Generally it is the slow mode which is preferred, although it is not relevant here. The difference between the 

initial values and the t=0 particular solutions gives the t=0 homogeneous solutions (subscript h). But we know 

that these evolve according to (11) : 

    00 00

( )e t
h h h h h tt

      


        1 1

jj j    . (21) 

 

And a closed form solution of (11) can always be obtained, if need be by reorienting the axes as discussed after 

(14). Of course, this time the x-y-z axes are not arbitrary as gravity makes the space anisotropic. However the axis 

reorientation is eminently permissible while treating the homogeneous torque-free solutions. Some messy axis 

transformations may be required to change from the reoriented axes to the original ones and thus obtain the 

precession and nutation in the gravity-aligned basis. But this procedure can be done in principle as well as in 

practice, and we have thus given a complete recipe for predicting the behaviour of a HST given its launch 

conditions.  

One of the demerits of the standard formulation of the top problem is that the effects of friction at the pivot are 

neglected. As Goldstein comments, “the effects of friction....cannot be directly included in the Lagrangian 

framework”. Nevertheless he also says that, for a practical top, “the nutation is damped out by friction at the 

pivot...” and “the top then appears to precess uniformly”. This statement is in fact not intuitive as one may ask why 

the friction selectively damps out the nutation leaving the precession unharmed. We see that our approach is 

amenable to the insertion of a friction term and the analysis of this system is the focus of the next subsection. 

 

3.  DAMPED COMPENSATED (DC) TOP 

A reasonable model of friction at the pivot features a torque proportional to the angular velocity, of course with a 

minus sign. The body frame angular velocity components are the natural choice as that is the only significant 

frame from the viewpoint of the top (the lab frame becomes special only if gravity is present but we assume the 

friction acts on the FST too). Hence we make the insertions of the form 



 
1d d      , (22a) 

 
2q q      , (22b) 

 
3o o      , (22c) 

 

where the γ’s (all greater than zero) denote damping coefficients which need not be equal on the three axes. But 

common sense says that they will be equal for the d and q axes and much less for the o axis. For instance, a crude 

gyroscope may use a ball bearing for mounting the rotor on its own axis but may use an ordinary (sliding) pivot to 

make contact with the ground. More sophisticated gyros will use a rotor powered by a motor which will produce a 

torque to counter the frictional effect and there will be no effective damping on the o axis. Damping on the o axis is 

anyway an undesirable phenomenon as it will be a hindrance in experimentation using the gyro. Hence we 

assume that γ1=γ2=γ and γ3=0. This last property is what we refer to by “compensation” in the title of this 

subsection – the o axis damping is compensated by an external motor. Accordingly we have the modified form of 

(5) : 

 
 

1d

dt I
    Γjω ω     . (23) 

 

This is the governing equation of the DCT. The homogeneous solution this time decays quickly to zero. The 

damped compensated FST (DCFST) will simply come to rest at some position spinning away without precessing or 

nuting, and this does not make for a worthwhile study. The damped compensated HST (DCHST) is more 

interesting and we start by writing its characteristic equation 

 
 

d
e

d
tMgh

t I


       1

jjω ω    . (24) 

  

Since the homogenous solutions are damped out we focus only on the particular integral, this time omitting the 

subscript p which we had used in Subsection II.2. Solving (24), applying (9) and separating real and imaginary 

gives the following equations : 
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Like (19) the equation for the precession is implicit and must be unscrambled to form a simple cubic; however 

that is not really too relevant. The presence of a damping term suggests that a fast precession state will not be 

favoured. For slow precession we note that the term Ω-ν evaluates to IoΩ/I. Now (25a) yields that the polar angle 

starts out from its initial value and decays to zero with a certain time constant. Making the assumption of slow 

precession, this time constant evaluates to 
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We note that this is quite different from the time constant 1/γ with which the homogeneous solutions die out. In 

fact for a very fast top, the homogeneous solutions are killed off much quicker than the time it takes for the angle 

to vanish. As the nutation arises only from the homogeneous solution [(25a) does not describe nutation under any 

circumstances] we have mathematically explained Goldstein’s comment that the nutation dies out and the top 

appears to precess uniformly.  

Another interesting feature of the solution is that the polar angle slowly but surely goes to zero. For very small θ, 

the precession is meaningless as it is scarcely visible. Hence the eventual state of the top is to spin uniformly 



pointing steadily in the upward vertical direction. It is a classic display of levitation – the top simply stands in 

equilibrium at the position which gravity would have considered the most unstable, mocking gravity to bring it 

down if it can. The ease of obtaining this solution encourages us to apply the method to a still more complicated 

case where the pivot is given an acceleration in the horizontal plane. That is the topic of the next subsection.  

 

4.  DCHST WITH HORIZONTAL ACCELERATION 

 In this subsection we consider the DCHST where the pivot experiences a uniform horizontal acceleration (a in the 

ˆx direction to be specific, not to be confused with the similar label of the axis, which does not appear in this 

subsection). As in the previous section we are interested in the long time state. Given the previous results, the 

problem is in fact a one-liner : the final state is no precession and no nutation,  1tan / /a g a g   and φ=π/2. In 

the pivot frame the centre of mass (CM) of the top experiences a pseudo force +Ma in the x̂ direction which is 

entirely equivalent to the gravitational force. Now the choice of the lab frame axes is arbitrary and we will recover 

the previous problem in toto if we align –z with the direction of the net force on the CM. The final state of the top 

would be to point along this new +z which in this case means vertically upward and in the direction of the 

acceleration. An easy check shows that the new z axis does indeed make the angles we claimed above with the 

original axes, and the problem is solved.  

In this paper however we are trying to see the applicability of our method so we prove that we can derive this 

result in our original x-y-z basis. The pseudo force on the CM is ˆMax and the torque is obtained by r F as usual. 

Now for the d-q-o components of torque we must expand F in the d-q-o basis and for this purpose we use the first 

column of the transformation matrix (7). Evaluating the cross product we have 

    ˆ ˆsin cos cos sin cos cos sin sinMah            
 

Γ d q     . (27) 

 

Recognizing the sines and cosines of sums, and adding on the gravitational torque we construct the Γ phasor and 

the governing equation for the top is  
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The problematic term here is the exp(-jφ) on the RHS. But we can save a lot of messy algebra by recognizing that 

the slow precessional states are favoured for the damped top. Under this condition the time variation of the term 

involving φ will be much less than that of the term featuring Ωt. This is the same argument as the one we used to 

treat θ as a constant in (18); as it happened we accrued no error in that case. Here, the error will not fortuitously 

evaluate to zero but we can definitely integrate (28) at least for a few cycles of spin, assuming φ to be a constant. 

This simplified integral will not be an exact description of the motion but let us see how much information we can 

get out of it. The particular solution with this assumption is 
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where we have written the form of  Ω-ν appropriate for slow precession. 

Using (9) and separating the real and imaginary parts yields  
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These equations are difficult to solve in detail and the easiest is to perform at this stage the axis rotation which we 

could have performed right at the beginning. The fixed point of the dynamics is evident though on inspection : 

 2 0/ ; / ;a g           , (31) 

 

which we have already shown is the true fixed point of the system.  

This at last completes the set of examples which we had wanted to demonstrate using our formalism. We close 

with a brief section where we summarise the main ideas and give some details regarding experimental 

visualization of the various conclusions we have drawn.   

 

Recapitulation and Conclusion 

The main point of this paper has been the proposal of a novel mathematical formalism for handling problems on 

rigid body rotation. We have selected the body frame as the reference frame of choice and used Euler’s equations 

(3) in it. The assumptions of symmetry and of no torque about the figure axis have resulted in the space phasor 

method being applicable on (3) to produce (5) which is one of our central equations. The  conversion from the 

abstract body frame angular velocities to the concrete, observable ones has been done using axis transformations 

(7), resulting in the second key equation (9). Until this point (i.e. in Sec. I) we have made no simplifications but 

merely done a mathematical reformulation of the top problem. The usual system of two second order differential 

equations with somewhat messy non-linear terms has been converted to a system of two nested complex 

equations of which the first one is linear. We say “nested” as (5) is like the outer equation and (9) the inner 

equation – the solution of (5) thus gives rise to yet another differential equation. The mathematical structure 

might also result in an advantage in obtaining numerical solutions of the top dynamics. The computer does not 

have to solve multiple equations simultaneously as in the traditional formalism, but can do so serially. 

The first application of the formalism is to the free symmetric top where the body frame analysis mirrors the 

standard treatment. The conversion to lab frame angular velocities has also been shown. The importance of this 

section is primarily because the free top solutions are in fact the homogeneous solutions of the heavy symmetric 

top. This homogeneous-particular approach is a direct method of determining the relation between the launch 

conditions of the heavy top and its subsequent motion. The particular solutions of (9) for the heavy top are given 

in (19); they admit uniform precession at a choice of two different frequencies, and no nutation. The t=0 

homogeneous solutions are obtained from the initial conditions and their evolution is governed by (21), whose 

solutions allow for nutation.  

Verification of the predictions of (19) and (21) needs a system where frictional effect is very low. One such 

experimental setup is a variation of the apparatus mentioned in Kleppner [9]. Our pivot consists of a large, light 

spherical ball which is kept in a closely fitting cup. Now the cup is connected to a powerful air blower so that the 

ball does not actually make contact with the cup but rides on an air cushion a few millimetres above it. This top 

can be subjected to various initial conditions and the agreement with our predictions can be measured.  

For the damped compensated top we see that the homogeneous solutions which include fast precession and 

nutation decay exponentially in time. The particular solution features uniform precession at a choice of three 

frequencies but because of the damping term, the slow precession is expected to be prevalent. The polar angle 

also decreases exponentially in time and eventually the top becomes vertical; the time constant of this decrease 

(26) is however not equal to that of the homogeneous solutions. When the top is subjected to a horizontal 

acceleration in addition to gravity, it eventually points opposite to the direction of the net force plus pseudo force.  

For experiments to verify these results, the primary feature to be careful of is that the viscous damping of our 

model is different from the static friction experienced at a practical rough pivot. An accurate result will be 

obtained if static friction is minimized and a damping is externally introduced. One way is to use a smooth ball and 

socket joint as the pivot and immerse the surrounding area in fluid. A still better implementation would be to 

construct the Kleppner top above with the ball made of a light metal like aluminium. A magnetic field can be set up 

in the region so that Lenz’s law serves to retard the pivot’s motion. Another subtlety which must be kept in mind 

is that the motor driving the top must produce a constant torque output to counter the frictional effect of the 



pivot. It should not tend towards a constant speed mode of operation, which will result in unwanted o axis 

torques. For an uncontrolled motor, the series field DC motor in the flux weakening regime is the best choice as its 

torque speed curve is nearly flat at high speeds. If motor control algorithms are employed, the induction motor 

with direct torque control will be the ideal candidate. 

 

*     *     *     *     * 
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